نمونه سوالات

جزوه مثلثات,حل تمرینات حسابان,نمونه سوالات ریاضی,ریاضی تجربی,حل المسائل ریاضی,ریاضی عمومی و پیش دانشگاهی,تست ریاضی,ریاضیات دانشگاه,سوالات ریاضی دبیرستان,آمار و مدل سازی,مدل لباس

نمونه سوالات

جزوه مثلثات,حل تمرینات حسابان,نمونه سوالات ریاضی,ریاضی تجربی,حل المسائل ریاضی,ریاضی عمومی و پیش دانشگاهی,تست ریاضی,ریاضیات دانشگاه,سوالات ریاضی دبیرستان,آمار و مدل سازی,مدل لباس

گیرنده دیجیتال ایکس ویژن

%da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+%d9%84%d9%be+%d8%aa%d8%a7%d8%a8 وسیله ای ساده برای در یافت کانال های صدا و سیما می باشد شما می توانید با %d8%ae%d8%b1%db%8c%d8%af+%da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+usb از طریق لپ تاب یا رایانه شخصی خود کانال های سیما را دریافت کنید %da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+usb در مارک های مختلف عرضه می شوند که شما با انتخاب مارک های مناسب می توانید از صدا و تصاویر بهتر بهره مند شوید

قیمت : 49000 تومان

خرید اینترنتی گیرنده دیجیتال کامپیوتر


%da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+%d9%84%d9%be+%d8%aa%d8%a7%d8%a8 وسیله ای ساده برای در یافت کانال های صدا و سیما می باشد شما می توانید با %d8%ae%d8%b1%db%8c%d8%af+%da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+usb از طریق لپ تاب یا رایانه شخصی خود کانال های سیما را دریافت کنید %da%af%db%8c%d8%b1%d9%86%d8%af%d9%87+%d8%af%db%8c%d8%ac%db%8c%d8%aa%d8%a7%d9%84+usb در مارک های مختلف عرضه می شوند که شما با انتخاب مارک های مناسب می توانید از صدا و تصاویر بهتر بهره مند شوید


قیمت : 49000 تومان


روانشناسی با اشکال هندسی روانشناسی اشکال ریاضی

روانشناسی اشکال ریاضی,عمومی,

روانشناسی با اشکال هندسی روانشناسی اشکال ریاضی

کاربرد: این آزمون برای ارزیابی افراد نسبت به موقعیت شغلیشان کاربرد دارد اگر شما به شدت علاقه مندید که کاری خاص و اصولی انجام دهید، فردی مربع دوست می تواند همکار خوبی برایتان باشد همچنین اینگونه افراد برای کارهای حسابرسی هم مناسب اند. اگر کارها به سازماندهی گروهی نیاز داشته باشد مثلث دوستان، در پیشبرد آنها موفق خواهند بود. این افراد می توانند مجری خوبی هم باشند چون اهداف را مشخص می کنند و اطمینان می یابند که دستیابی به آنها ممکن است. برای هر نوع ارتباطات حضوری، افرادی که دایره را انتخاب می کنند بهترین اند. آنان می توانند کارمند خوب یا مسئول پذیرش و یا فردی باشند که به مشتریان خود خدمات مناسبی عرضه می کنند. در آخر افرادی که به منحنی علاقه دارند همیشه طرحهای تازه دارند و برای کار در شرکتهای تبلیغاتی مناسبند.

 

آزمونی ساده: ساده ترین اشکال هندسی را به یاد بیاورید: مربع، مستطیل، مثلث، دایره، منحنی پس خیلی سریع و بدون اینکه زیاد به مغزتان فشار بیاورید، شکلی را انتخاب کنید که بیشتر از همه می پسندید. آزمونی روانشناسی پیش روی شماست، که با توجه انتخابتان به سرعت نشان می دهد که شما در زندگی چه جور آدمی هستید و احتمال موفقیتتان در چه مشاغلی بیشتر است.

مربع: کسانی اند که در محیط پایدار بیشترین احساس آرامش را دارند و مسیر کارهایشان به طور کامل آشکار است. چنین اشخاصی محافظه کارند و دوست دارند که همه چیز مرتب و منظم باشد. وظیفه شناس اند و اگر کاری را به آنها محول کنید، آنقدر روی آن وقت می گذارند تا تمام شود حتی اگر کاری تکراری و طاقت فرسا باشد و مجبور شوند که بتنهایی آن را انجام دهند.

مستطیل: پایبند بودن از اصول مشخصه آنهاست، نظم و ترتیب را دوست دارند ولی آن را با سازماندهی دقیق اجرا می کنند این امر سبب می شود تا راههای مناسبی را انتخاب و همه قواعد و مقررات را بررسی کنند. اگر وظیفه ای را به این اشخاص محول کنید ابتدا آن را به خوبی سازماندهی می کنند تا اطمینان یابند که به طور اصولی اجرا خواهد شد.

آنهایی که مثلث را انتخاب می کنند: اشخاصی هدف گرایند و از برنامه ریزی قبل از انجام دادن کارها لذت می برند و به طرح موضوع و برنامه های بزرگ و بلند مدت تمایل دارند اما ممکن است که مسائل جزئی را فراموش کنند اگر کاری را بر عهده آنان بگذارید، ابتدا هدفی را برای آن تعیین و سپس با برنامه ریزی کار را آغاز می کنند.

آنهایی که دایره را انتخاب می کنند: اجتماعی و خوش صحبت اند و هیچ لحن خشنی ندارند و امور را با صحبت کردن درباره آن تنظیم می کنند و نخستین اولویتشان در زندگی ارتباطات است. مطمئن باشید که اگر وظیفه ای را به آنها محول کنید آنقدر درباره آن صحبت می کنند تا هماهنگی لازم برای به انجام رسیدن آن کار ایجاد شود.

منحنی: خلاقیت در آنها موج می زند و اغلب کارهای جدید و متفاوتی انجام می دهند. نظم و ترتیب برایشان کسالت آور است. اگر تکلیفی را برای آنها در نظر بگیرید طرهحای خوب و مطمئنی برای آنها ابداع می کنند.

نتیجه گیری: به طور کلی افرادی که سه شکل اول یعنی مربع، مستطیل، مثلث را انتخاب می کنند در مسیر ویژه ای حرکت می کنند و کارها را به طور منطقی و اصولی انجام می دهند ولی ممکن است خلاقیت کمی داشته باشند گزینش دایره و منحنی نشان دهنده خلاقیت و برونگرایی است چنین افرادی به موقعیتهای جدید دسترسی پیدا می کنند ولی چندان اصولگرا و اعتماد کردنی نیستند.

کاربرد: این آزمون برای ارزیابی افراد نسبت به موقعیت شغلیشان کاربرد دارد اگر شما به شدت علاقه مندید که کاری خاص و اصولی انجام دهید، فردی مربع دوست می تواند همکار خوبی برایتان باشد همچنین اینگونه افراد برای کارهای حسابرسی هم مناسب اند. اگر کارها به سازماندهی گروهی نیاز داشته باشد مثلث دوستان، در پیشبرد آنها موفق خواهند بود. این افراد می توانند مجری خوبی هم باشند چون اهداف را مشخص می کنند و اطمینان می یابند که دستیابی به آنها ممکن است. برای هر نوع ارتباطات حضوری، افرادی که دایره را انتخاب می کنند بهترین اند. آنان می توانند کارمند خوب یا مسئول پذیرش و یا فردی باشند که به مشتریان خود خدمات مناسبی عرضه می کنند. در آخر افرادی که به منحنی علاقه دارند همیشه طرحهای تازه دارند و برای کار در شرکتهای تبلیغاتی مناسبند.

مجله رشد برهان ریاضی متوسطه اول شماره 54 تابستان 1389 مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه

مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه,مجله رشد برهان ریاضی,عمومی,مجلات ریاضی,مجله رشد برهان ریاضی,مجله رشد برهان ریاضی راهنمایی,مجله ی رشد برهان ریاضی دبیرستان,فصلنامه رشد برهان ریاضی,فصلنامه رشد برهان ریاضی,دانلود مجله ی رشد برهان ریاضی دبیرستان

مجله رشد برهان ریاضی متوسطه اول شماره 54 تابستان 1389 مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه

پنجاه و چهارمین شماره ی مجله رشد برهان ریاضی ویژه دانش آموزان دوره ی اول متوسطه منتشر گردید.

دانلود مجله رشد برهان ریاضی شماره ۵۴

(ویژه ی دانش آموزان دوره ی اول متوسطه)

مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه,مجله رشد برهان ریاضی,عمومی,مجلات ریاضی,مجله رشد برهان ریاضی,مجله رشد برهان ریاضی راهنمایی,مجله ی رشد برهان ریاضی دبیرستان,فصلنامه رشد برهان ریاضی,فصلنامه رشد برهان ریاضی,دانلود مجله ی رشد برهان ریاضی دبیرستان,

پنجاه و چهارمین شماره ی مجله رشد برهان ریاضی ویژه دانش آموزان دوره ی اول متوسطه منتشر گردید.

فایل pdf این شماره را در ادامه ی مطلب دانلود نمایید.


دانلود مجله رشد برهان ریاضی  (متوسطه ۱) تابستان ۱۳۸۹

مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه,مجله رشد برهان ریاضی,عمومی,مجلات ریاضی,مجله رشد برهان ریاضی,مجله رشد برهان ریاضی راهنمایی,مجله ی رشد برهان ریاضی دبیرستان,فصلنامه رشد برهان ریاضی,فصلنامه رشد برهان ریاضی,دانلود مجله ی رشد برهان ریاضی دبیرستان,
مجله برهان ریاضی وِیژه دانش آموزان دوره اول متوسطه,مجله رشد برهان ریاضی,عمومی,مجلات ریاضی,مجله رشد برهان ریاضی,مجله رشد برهان ریاضی راهنمایی,مجله ی رشد برهان ریاضی دبیرستان,فصلنامه رشد برهان ریاضی,فصلنامه رشد برهان ریاضی,دانلود مجله ی رشد برهان ریاضی دبیرستان,

فرمت فایل:

pdf

حجم فایل:

۳٫۷ مگابایت

پسورد فایل:

بدون پسورد

منبع:

ریاضی سرا

لگاریتم و کاربردهای آن در زندگی کاربرد لگاریتم

عمومی,کاربردهای ریاضی,کاربرد لگاریتم,کاربرد لگاریتم,کاربرد لگاریتم در ریاضی,کاربرد لگاریتم در کامپیوتر,کاربرد لگاریتم در زلزله,کاربرد لگاریتم در شیمی,کاربرد لگاریتم در حسابداری,کاربرد لگاریتم در اقتصاد,کاربرد لگاریتم طبیعی,کاربرد لگاریتم در طبیعت,کاربرد لگاریتم در صنعت,کاربردهای ریاضی,کاربردهای ریاضی در زندگی روزمره,کاربردهای ریاضیات,کاربردهای ریاضی در صنعت,کاربردهای ریاضی در زندگی روزمره و صنعت,کاربردهای ریاضیات در صنعت,کاربردهای ریاضی در برق,کاربردهای ریاضی در طبیعت,کاربردهای ریاضی در علوم مختلف,کاربردهای ریاضی درزندگی

لگاریتم و کاربردهای آن در زندگی کاربرد لگاریتم

 نظریه ها و قاعده های ریاضی، با کشف خود «هستی» پیدا می کنند، آن ها تنها وجود دارند و اغلب بدون کاربردند. دیر یا زود، و گاهی بعد از صدها و هزارها سال، این موجودات ریاضی به «صفت» تبدیل می شوند و کاربرد خود را در زندگی و عمل، در سایر دانش ها، در صنعت و هنر پیدا می کنند.شاید ۳۸۰ سال پیش کسی فکر نمی کرد لگاریتمی که در رابطه با نیاز محاسبات عملی کشف شد در آینده کاربردهای وسیعی پیدا کند. شاید هیچوقت کپلر فکر نمی کرد که جدول هایی را که برای ساده  کردن محاسبات طولانی در تعیین مدار مریخ و یا کارهای اخترشناسی دیگرش تنظیم کرد، جرقه ای این چنین را در ریاضیات ایجاد کند. یا شاید لاپلاسی که گفت: “لگاریتم طول زندگی اخترشناسان را چند برابر کرد” نمی دانست که نظریه ها و قاعده های ریاضی، با کشف خود «هستی» پیدا می کنند، آن ها تنها وجود دارند و اغلب بدون کاربردند. دیر یا زود، و گاهی بعد از صدها و هزارها سال، این موجودات ریاضی به «صفت» تبدیل می شوند و کاربرد خود را در زندگی و عمل، در سایر دانش ها، در صنعت و هنر پیدا می کنند.شاید ۳۸۰ سال پیش کسی فکر نمی کرد لگاریتمی که در رابطه با نیاز محاسبات عملی کشف شد در آینده کاربردهای وسیعی پیدا کند. شاید هیچوقت کپلر فکر نمی کرد که جدول هایی را که برای ساده  کردن محاسبات طولانی در تعیین مدار مریخ و یا کارهای اخترشناسی دیگرش تنظیم کرد، جرقه ای این چنین را در ریاضیات ایجاد کند. یا شاید لاپلاسی که گفت: “لگاریتم طول زندگی اخترشناسان را چند برابر کرد” نمی دانست که نه تنها طول زندگی اخترشناسان بلکه دریانوردان، بازرگانان، موسیقیدانان، شیمیدانان، ریاضیدانان، زمین شناسان و حتی همه ی انسان های کره ی زمین را چند برابر کرد. بدیهی است که تا نیاز به چیزی احساس نشود آن چیز کشف و اختراع نمی گردد، در واقع هرکدام از علومی که با آن روبه رو هستیم هریک به مقتضای نیازی و با توجه به هدف خاصی پیکر بندی شده اند. لگاریتم نیز با توجه به محاسبه های طولانی و ملال آوری که دانشمندان سده های شانزدهم و هفدهم میلادی با آن سر و کار داشتند، بوجود آمد. این محاسبه ها وقت و نیروی زیادی را از دانشمندان تلف می کرد و همیشه دانشمندان در ذهن داشتند که چطور می شود بدون انجام چنین محاسبات پیچیده و دشواری و آن هم در کمترین زمان ممکن به جواب مطلوب دست یابند. گفته می شود که حتی در قرن هشتم هندی ها با محاسبات مربوط به لگاریتم آشنایی داشتند اما این کلمه و مفهوم مربوط می شود به قرن شانزدهم .جدول هایی نیز در این زمینه بوجود آمد و شاید همین تلاش ها و نیازها بود که سر انجام به کشف لگاریتم انجامید تا آن جا که دو دانشمند به طور همزمان و بدون اینکه از کار یکدیگر آگاه باشند موفق به کسب چنین افتخاری گشتند اولی جان نپر و دیگری بورگی. اما اصطلاح لگاریتم نشات گرفته از فعالیت های نپر است که از واژه ی یونانی «لوگوس» به معنی نسبت و «ارتیوس» به معنی عدد گرفته شده است. او همچنین بجای لگاریتم از اصطلاح عدد ساختگی نیز استفاده می کرد. نپر چکیده ی کارهای خود را در کتابی با عنوان «شرح جدول های عجیب لگاریتمی» چاپ کرد و به دنیا نمایاند.

 نظریه ها و قاعده های ریاضی، با کشف خود «هستی» پیدا می کنند، آن ها تنها وجود دارند و اغلب بدون کاربردند. دیر یا زود، و گاهی بعد از صدها و هزارها سال، این موجودات ریاضی به «صفت» تبدیل می شوند و کاربرد خود را در زندگی و عمل، در سایر دانش ها، در صنعت و هنر پیدا می کنند.شاید ۳۸۰ سال پیش کسی فکر نمی کرد لگاریتمی که در رابطه با نیاز محاسبات عملی کشف شد در آینده کاربردهای وسیعی پیدا کند.
شاید هیچوقت کپلر فکر نمی کرد که جدول هایی را که برای ساده  کردن محاسبات طولانی در تعیین مدار مریخ و یا کارهای اخترشناسی دیگرش تنظیم کرد، جرقه ای این چنین را در ریاضیات ایجاد کند.
یا شاید لاپلاسی که گفت: “لگاریتم طول زندگی اخترشناسان را چند برابر کرد” نمی دانست که نظریه ها و قاعده های ریاضی، با کشف خود «هستی» پیدا می کنند، آن ها تنها وجود دارند و اغلب بدون کاربردند. دیر یا زود، و گاهی بعد از صدها و هزارها سال، این موجودات ریاضی به «صفت» تبدیل می شوند و کاربرد خود را در زندگی و عمل، در سایر دانش ها، در صنعت و هنر پیدا می کنند.شاید ۳۸۰ سال پیش کسی فکر نمی کرد لگاریتمی که در رابطه با نیاز محاسبات عملی کشف شد در آینده کاربردهای وسیعی پیدا کند.
شاید هیچوقت کپلر فکر نمی کرد که جدول هایی را که برای ساده  کردن محاسبات طولانی در تعیین مدار مریخ و یا کارهای اخترشناسی دیگرش تنظیم کرد، جرقه ای این چنین را در ریاضیات ایجاد کند.
یا شاید لاپلاسی که گفت: “لگاریتم طول زندگی اخترشناسان را چند برابر کرد” نمی دانست که نه تنها طول زندگی اخترشناسان بلکه دریانوردان، بازرگانان، موسیقیدانان، شیمیدانان، ریاضیدانان، زمین شناسان و حتی همه ی انسان های کره ی زمین را چند برابر کرد.
بدیهی است که تا نیاز به چیزی احساس نشود آن چیز کشف و اختراع نمی گردد، در واقع هرکدام از علومی که با آن روبه رو هستیم هریک به مقتضای نیازی و با توجه به هدف خاصی پیکر بندی شده اند.
لگاریتم نیز با توجه به محاسبه های طولانی و ملال آوری که دانشمندان سده های شانزدهم و هفدهم میلادی با آن سر و کار داشتند، بوجود آمد. این محاسبه ها وقت و نیروی زیادی را از دانشمندان تلف می کرد و همیشه دانشمندان در ذهن داشتند که چطور می شود بدون انجام چنین محاسبات پیچیده و دشواری و آن هم در کمترین زمان ممکن به جواب مطلوب دست یابند. گفته می شود که حتی در قرن هشتم هندی ها با محاسبات مربوط به لگاریتم آشنایی داشتند اما این کلمه و مفهوم مربوط می شود به قرن شانزدهم .جدول هایی نیز در این زمینه بوجود آمد و شاید همین تلاش ها و نیازها بود که سر انجام به کشف لگاریتم انجامید تا آن جا که دو دانشمند به طور همزمان و بدون اینکه از کار یکدیگر آگاه باشند موفق به کسب چنین افتخاری گشتند اولی جان نپر و دیگری بورگی.
اما اصطلاح لگاریتم نشات گرفته از فعالیت های نپر است که از واژه ی یونانی «لوگوس» به معنی نسبت و «ارتیوس» به معنی عدد گرفته شده است. او همچنین بجای لگاریتم از اصطلاح عدد ساختگی نیز استفاده می کرد. نپر چکیده ی کارهای خود را در کتابی با عنوان «شرح جدول های عجیب لگاریتمی» چاپ کرد و به دنیا نمایاند.

عدد e (مبنای لگاریتم طبیعی) نیز در چنین سال هایی چشم به جهان و جهانیان گشود. گفته می شود کاشف عددe  آن گونه که برخی می پندارنداویلر نبوده است بلکه خود نپر بحث مربوط به لگاریتم طبیعی و عدد e را در یکی از نوشته هایش پیش کشیده است.
بعد از آشکار شدن لگاریتم به جهانیان ابزارهایی برای آسانتر کردن محاسبات لگاریتمی کشف شد که از آن جمله می توان به خط کش لگاریتمی ساخته ی گونتر انگلیسی اشاره نمود. امروزه نیز با استفاده از ماشین حساب و با فشردن یک کلید میتوان عمل لگاریتم گرفتن را به آسانی و سرعت انجام داد.
با ورود لگاریتم به دنیای ریاضیات و آشنا شدن مردم و دانشمندان با آن، این شاخه کاربردهای زیادی را در زندگی روزمره پیدا کرد. چنانکه امروزه لگاریتم در حسابداری و در تعیین بهره ی مرکب و نیز مسائل مالی کاربرد فراوانی یافته است. همان زمان که لگاریتم اختراع شده بود اویلر رابطه ی بین عدد e  و بهره ی مرکب را دریافت و فهمید که حد بهره به سمت عددی متناسب (یا مساوی در شرایط خاص) ، که همان عدد e است میل می کند. همچنین از لگاریتم در مدلسازی و بازار یابی سهمی استفاده می شود. مدلسازی ایجاد الگو و تمثیلی برای تجسم واقعیت های خارجی است که در مسائل مربوط به ریاضیات و حسابداری کاربرد دارد.

درادامه ی مبحث کاربردهای لگاریتم شاید جالب باشد که بدانیم لگاریتم درهنرنیزکاربرد پیدا می کند. میدانیم درموسیقی برای بیان فشارصوت از دسیبل(Decibel ) استفاده می شود. اصطلاح دسیبل که در بسیاری از مباحث فیزیک موسیقی و نیز به هنگام استفاده از اعمال ضبط و افکت در استودیوهای موسیقی کاربرد دارد در واقع از یک محاسبه ی لگاریتمی فوق العاده آسان قابل محاسبه است.

اصطلاح دسیبل برای مقایسه ی نسبت بین دو مقدار در علوم فیزیک، الکترونیک و بسیاری از رشته های مهندسی استفاده می شود. گفتیم دسیبل در فیزیک صوت کاربرد زیادی دارد، یکی از دلایل استفاده از لگاریتم در این شاخه این است که از آن جایی که هر دو مقداری که قرار است با هم مقایسه شوند دارای ابعاد فیزیکی یا دیمانسیون(Dimention) یکسان هسنتد خارج قسمت آن ها عدد خالص و بدون واحد است، لذا می توان از خارج قسمت آن ها لگاریتم گرفت تا بتوان ساده تر مقادیر بسیار کوچک یا بسیار بزرگ را با هم مقایسه کرد، بدون این که از رقم ها و عددهای بزرگ و کوچک استفاده شود.

بعبارتی دیگر می توان گفت دسیبل واحدی است برای تغییر حجم صدا. البته قبلا برای این کار از واحد بل(مخترع تلفن) استفاده می شد.

کاربردهای لگاریتم در موسیقی در این جا پایان نمی یابد. مثلا لگاریتم در بیان سطح فشار صوت (Sound pressure level) کاربرد می یابد که در آن از معیاری به نام SPL یا سطح فشار صوت استفاده می شود.

همچنین، ساوار موسیقیدان و فیزیکدان فرانسوی که واحد سنجش فواصل موسیقی به نام اوست با استفاده از یکی از خاصیت های لگاریتم(لگاریتم حاصلضرب برابرست با حاصل جمع لگاریتم ها) توانست فواصل موسیقی را با هم جمع یا تفریق کند. بعدها برای اینکه جمع و تفریق آن ها از حالت اعشاری خارج شود واحد «سناوار» را مرسوم کردند.

از مهمترین کاربردهای لگاریتم میتوان به کاربرد آن در علم زلزله شناسی اشاره نمود. مشکلات زیادی در اندازه گیری بیشینه ی دامنه وجود داشت که به توصیه ی گوتنبرگ دانشمند برجسته ی زمین لرزه شناسی اندازه گیری آن بصورت لگاریتم اعشاری انجام شد، امروزه در رابطه ی مقیاس بندی ریشتر و محاسبه ی بزرگی زلزله به لگاریتم بر می خوریم. سال ها بعد چارلز ریشتر زلزله شناس آمریکایی یک مقیاس لگاریتمی را برای سنجش زلزله تعیین کرد که هنوز هم مورد استفاده است و به نام خودش(ریشتر) معروف است. زلزله شناسان نیز انرژی آزاد شده بوسیله ی زلزله، دامنه و فاصله ی زلزله (کانون زلزله) را با محاسبات لگاریتمی اندازه گیری می کنند. البته بزرگی زلزله یک درجه ی قرار داری است اما می توان از طریق آن و بطور نسبی زمین لرزه ها را با یکدیگر مقایسه نمود.

اما باید گفت پرکاربرد ترین علمی که از لگاریتم در آن استفاده می شود شیمی تجزیه است. در شیمی تجزیه بارها و بارها با لگاریتم و عمل لگاریتم گیری مواجه می شویم از آن جمله می توان به استفاده از لگاریتم در اندازه گیری PH ، توابعP ،معادله ی دبای-هوکل که با استفاده از آن می توان ضرایب فعالیت یون ها را از طریق بار و میانگین اندازه ی آن ها محاسبه کرد اشاره نمود.

کاربردهای لگاریتم تنها به موارد اشاره شده در این مقاله ختم نمی شود چنانچه لگاریتم در علوم زیستی، نجوم و در اخترشناسی جهت اندازه گیری فاصله بین ستارگان و سیاره ها، آمار، علوم کامپیوتر، زمین شناسی و… نیز کاربرد می یابد ، چه بسا کاربردهای دیگری را که در آینده از لگاریتم شاهد خواهیم بود.

منابع:

۱) سرگذشت ریاضیات، پرویز شهریاری، تهران: نشر مهاجر، ۱۳۷۹٫

۲) مسائل اساسی ریاضی، مندلسون ترجمه عادل ارشقی انتشارات تهران
۳) خواندنیهای ریاضی، پرویز عظیمی، زاهدان:دانشگاه سیستان و بلوچستان، معاونت پژوهشی، ۱۳۷۹٫